Boundary value problems on weighted networks

نویسندگان

  • Enrique Bendito
  • Angeles Carmona
  • Andrés M. Encinas
چکیده

We present here a systematic study of general boundary value problems on weighted networks that includes the variational formulation of such problems. In particular, we obtain the discrete version of the Dirichlet Principle and we apply it to the analysis of the inverse problem of identifying the conductivities of the network in a very general framework. Our approach is based on the development of an efficient vector calculus on weighted networks which mimetizes the calculus in the smooth case. The key tool is an adequate construction of the tangent space at each vertex. This allows us to consider discrete vector fields, inner products and general metrics. Then, we obtain discrete versions of derivative, gradient, divergence and Laplace-Beltrami operators, satisfying analogous properties to those verified by their continuous counterparts. On the other hand we develop the corresponding integral calculus that includes the discrete versions of the Integration by Parts technique and Green’s Identities. Finally, we apply our discrete vector calculus to analyze the consistency of difference schemes used to solve numerically a Robin boundary value problem in a square.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Studies on Sturm-Liouville boundary value problems for multi-term fractional differential equations

  Abstract.   The Sturm-Liouville boundary value problem of the multi-order fractional differential equation  is studied. Results on the existence of solutions are established. The analysis relies on a weighted function space and a fixed point theorem. An example is given to illustrate the efficiency of the main theorems.

متن کامل

Bounds on the first non-null eigenvalue for self-adjoint boundary value problems on networks

We aim here at obtaining bounds on the first non-null eigenvalue for self-adjoint boundary value problems on a weighted network by means of equilibrium measures, that includes the study of Dirichlet, Neumann and Mixed problems. We also show the sharpness of these bounds throughout the analysis of some known examples. In particular, we emphasize the case of distance-regular graphs, and we show t...

متن کامل

Bounds on the First Nonzero Eigen- Value for Self-adjoint Boundary Value Problems on Networks

We aim here at obtaining bounds on the first nonzero eigenvalue for selfadjoint boundary value problems on a weighted network by means of equilibrium measures, that include the study of Dirichlet, Neumann and Mixed problems. We also show the sharpness of these bounds throughout the analysis of some examples. In particular we emphasize the case of distance-regular graphs and we show that the obt...

متن کامل

On two classes of third order boundary value problems with finite spectrum

‎The spectral analysis of two classes of third order boundary value problems is investigated‎. ‎For every positive integer $m$ we construct two classes of regular third order boundary value problems with at most $2m+1$‎ ‎eigenvalues‎, ‎counting multiplicity‎. ‎These kinds of finite spectrum results are previously known only for even order boundary value problems‎.

متن کامل

Using finite difference method for solving linear two-point fuzzy boundary value problems based on extension principle

In this paper an efficient Algorithm based on Zadeh's extension principle has been investigated to approximate fuzzy solution of two-point fuzzy boundary value problems, with fuzzy boundary values. We use finite difference method in term of the upper bound and lower bound of $r$- level of fuzzy boundary values. The proposed approach gives a linear system with crisp tridiagonal coefficients matr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 156  شماره 

صفحات  -

تاریخ انتشار 2008